
## 「有機性廃液のバイオガス化研究会」

(成果発表会)



平成25年8月27日

北九州市立大学大学院国際環境工学研究科 教授 安井英斉 株式会社サニックス ひびき工場

> 小野信行 豊島崇之 浦田雅臣



### 目次

- 1.研究期間
- 2.研究会メンバー
- 3.研究の背景
- 4.研究の目的
- 5.研究成果
- 6.今後の予定



### 1. 研究期間

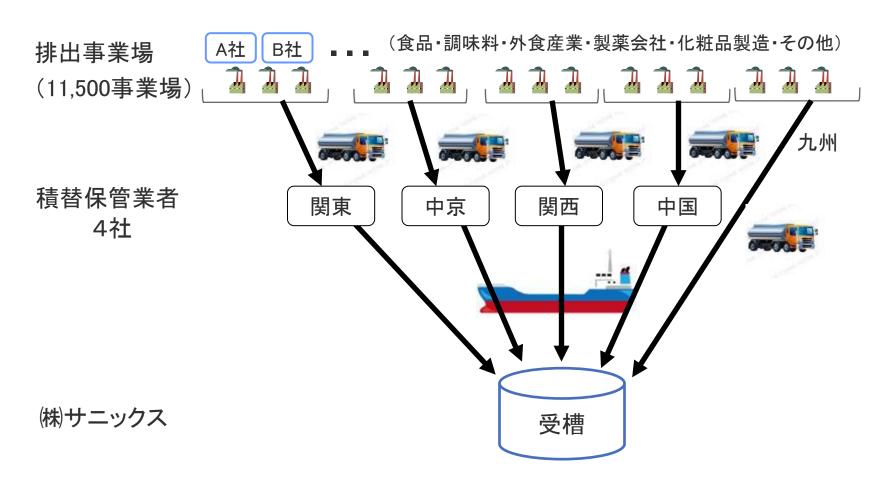
□本研究会の研究期間

平成23年12月5日~平成25年3月15日

- □研究概要
  - 《平成23年度》
    - ・受入マニフェスト情報分析
    - 実験条件設定および実験器具等の準備
  - 《平成24年度》
    - 有機性廃液のメタン発酵適性の把握
    - •メタン発酵処理施設規模の検討

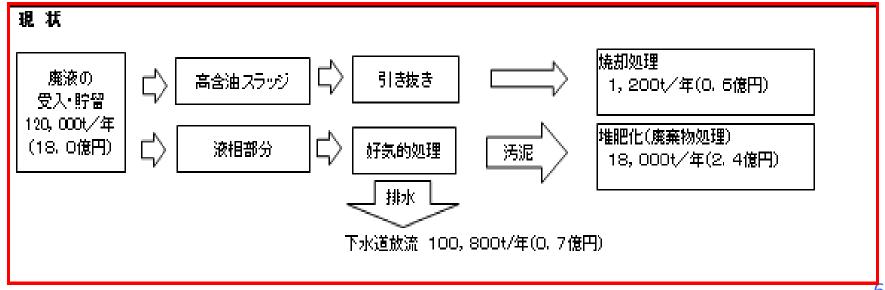


# 2. 研究会メンバー


## □実施体制

| 組織名                     | 担当者                      | 役割•実施内容                                 |
|-------------------------|--------------------------|-----------------------------------------|
| 北九州市立大学大学院<br>国際環境工学研究科 | 教授 安井英斉                  | 実験方法及び<br>結果等に関する<br>専門的な立場<br>からのアドバイス |
| 株式会社サニックス<br>ひびき工場      | 工場長 小野信行係長 豊島崇之主任心得 浦田雅臣 | 研究開発に係る<br>実務全般<br>実験準備、<br>報告書作成、など    |

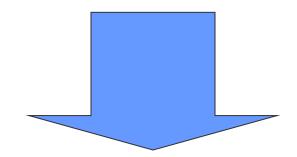



## 3. 研究の背景(事業の概要)

□ 関東以西の排出事業場から収集した廃液を取り扱っている。





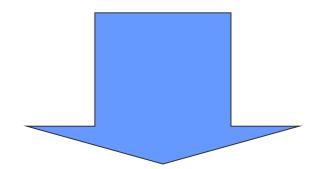

- □ 有機性廃液を脱水処理し、濃縮した脱水汚泥の処分は 堆肥化業者に委託している。
  - ≪課題≫
  - ・堆肥需要の先細り
  - ・ 堆肥化施設周辺の開発などによる悪臭問題
  - ・膨大な委託費用が発生





### 4. 研究の目的

□ 廃棄物(有機性廃液)処理の持続性確保と処理経費 削減が課題




有機性廃液のメタン発酵によるバイオガス化をめざす。



### 研究の課題

- □ メタン発酵技術は、一般廃棄物である生ゴミや下水汚泥での実績は豊富にある。
- □ 産業廃棄物に対しては、研究例が少なく未知数である。



□ 弊社で取扱っている有機性廃液とメタン発酵の有効性を確認する。



### 研究の課題

- □課題A 有機性廃液のメタン発酵適性の把握
  - 課題A-1 受入廃液のマニフェスト分析 業種による廃棄物の分類、メタン発酵の適不適の判別
  - 課題A-2 個別廃液のメタン発酵への阻害性確認 メタン発酵を阻害する可能性のある廃液を対象に、発酵を 阻害する廃液をリストアップする。
  - 課題A-3 有機性廃液のメタン発酵適性調査 食品系廃液(個別廃液)、各地区バージ廃液(混合廃液)、 受槽廃液(混合廃液)を対象に、メタン発酵適性を把握する。
- □課題B メタン発酵処理施設規模の検討

メタン発酵処理設備規模、ガス発生量、エネルギー利用 効果の見積りを行なう。



#### 課題A-1受入廃液のマニフェスト分析

#### □ 分析方法

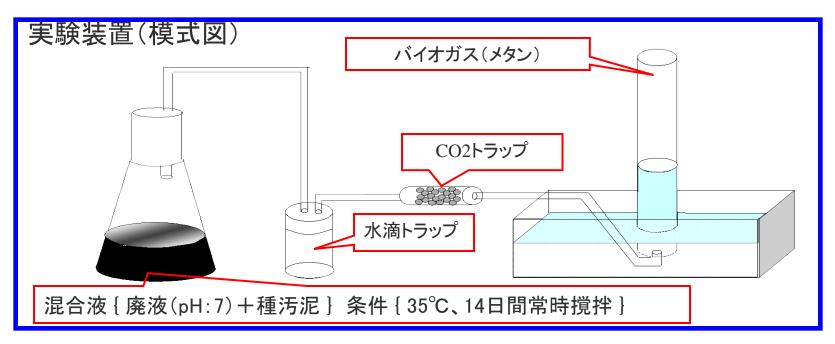
- i)排出事業場名のリストを作成
- ii)食品関連、化学薬品工場、医薬品関連工場、その他、多種類の混合、 不明に分類
- iii)食品系以外の事業場について、廃液の情報をまとめた。

#### □ 分析結果

- i)受入は業者、量ともランダム
- ii)全事業場数中、食品関係が11,155件、それ以外(不明を含む)が 345件であった。
- iii)メタン発酵阻害物質排出業種がある(硫酸含有廃液、フッ硝酸含有廃液)

#### □ 分析結果を受けての検討事項

- i)メタン発酵阻害物質排出業者毎の阻害性確認
- ii )混合廃液での阻害性確認(阻害物質の希釈効果)




#### 課題A-2 個別廃液のメタン発酵への阻害性確認

#### □実験方法

発酵を阻害する可能性がありそうな食品系以外の廃液を対象に、各廃液 と種汚泥を混合してバッチ試験を行ない、ガス発生量(総量)を計測する。

- ≪種汚泥≫北九州市東部浄化センターの中温消化槽(35℃)の汚泥を使用。
- ≪廃液添加割合≫ O. 2(g-廃液TS/g-消化汚泥TS) ※TS:蒸発残留物量 (105℃乾燥時の残留物を測定)



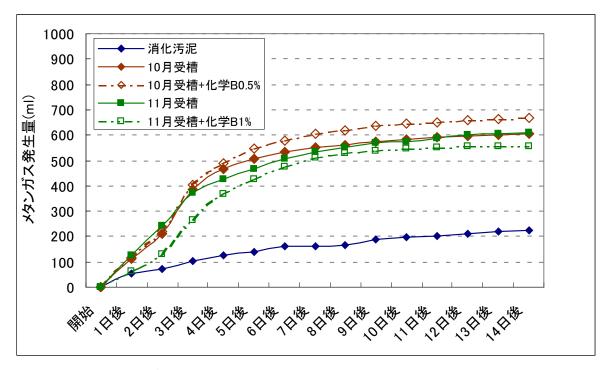


#### 課題A-2 個別廃液のメタン発酵への阻害性確認

□ 食品系以外の廃液のメタン発酵適性確認

※CH<sub>4</sub>/VTS(有機物1g当たり発生したCH<sub>4</sub>量)

| CH <sub>4</sub> /VTS | 件 数 | 評価      |
|----------------------|-----|---------|
| 0.1 以上               | 44  | 問題ない    |
| 0~0.1 未満             | 21  | 発酵性に乏しい |
| 0 未満                 | 13  | 阻害性あり   |
| 合 計                  | 78  |         |


- ・阻害性が疑われた廃液でも、78件中44件は、メタン発酵に問題ない 廃液であった。
- ・メタン発酵に乏しい廃液は34件あり、そのうちの13件は阻害性がある 廃液であった。

阻害性のある一つの廃液については、実際に工場への搬入割合を想定し、 阻害性廃液が受槽廃液に混入した場合の影響を確認した。



### 課題A-2 個別廃液のメタン発酵への阻害性確認

□ 阻害性廃液の有無の比較



- ・阻害性廃液が1%混入した場合でも差は見られなかった。
  - ⇒メタン発酵への影響は非常に小さいことが確認できた。
- •13件の阻害性廃液を合計しても受入割合はおよそ2.3%である。
  - ⇒処理への影響は限定的と考えられる。



### 課題A-3 有機性廃液のメタン発酵適性調査

(実験方法は課題A-2と同様)

□ 食品系廃液のメタン発酵適性

| CH <sub>4</sub> /VTS | 件数 | 評価      |
|----------------------|----|---------|
| 0.9以上                | 5  | 生ゴミと同等  |
| 0.5~0.9未満            | 12 | 食品残渣と同等 |
| 0.1~0.5未満            | 9  | 下水汚泥と同等 |
| 0~0.1未満              | 2  | 発酵性に乏しい |
| 0未満                  | 0  | 阻害性あり   |
| 合 計                  | 28 |         |

- ・食品系廃液は、ほぼメタン発酵に適した廃液ばかりであった。
- 一部発酵性に乏しい廃液も含まれていた。

食品系廃液の中でも、廃液によって、CH4/VTSが大きく異なるので、CH4/VTSがより高い廃液を選定することで、効率的に発酵できそうである。



#### 課題A-3 有機性廃液のメタン発酵適性調査

□ 各地区バージ廃液と受槽廃液でのメタン発酵適性

| CH₄/VTS   | 各地区バージ廃液 |    | 受槽 | 評価 |         |
|-----------|----------|----|----|----|---------|
| 0114/ 113 | 関東       | 中京 | 関西 | 廃液 | 計加      |
| 0.9以上     | 0        | 1  | 2  | 3  | 生ゴミと同等  |
| 0.5~0.9未満 | 0        | 0  | 2  | 10 | 食品残渣と同等 |
| 0.1~0.5未満 | 5        | 2  | 0  | 0  | 下水汚泥と同等 |
| 0~0.1未満   | 0        | 1  | 0  | 0  | 発酵性に乏しい |
| 0未満       | 0        | 0  | 0  | 0  | 阻害性あり   |

- •関西地区廃液は、比較的ガス発生量が多く、地区単体でもメタン 発酵に適した廃液であることが確認できた。
- ・受槽廃液は、食品残渣と同等のガス発生量が確認できた。

個別廃液の中には、発酵性に乏しい廃液もあるが、廃液が平均化 される受槽レベルでは、問題なくメタン発酵できることが確認できた。



#### 課題B メタン発酵処理施設規模の検討

- □メタンガスの有効活用法の検討
  - ・ガス会社へ売却、自家発電自家消費、など ⇒実現性が乏しい
  - ・平成24年7月に始まった、再生可能エネルギー固定買取制度 (FIT)を利用した売電 ⇒**実現性あり、事業化への可能性あり。**
- □ FITを活用する場合での事業性について試算

①試算条件について(日処理量t当たりの試算条件)

| 項目                  | 単 価              | 備考             |
|---------------------|------------------|----------------|
| 発電効率                | 1.5 kw/N-m3      | 消化がみ対象         |
| 売電価格                | 39 円/kw          | H24年税抜価格       |
| 自家消費電力              | 50 kw/t-日処理量     |                |
| 処理液の昇温に<br>必要な消化ガス量 | 5 N-m3/t-日処理量    |                |
| 初期費用                | 10,000 千円/t-日処理量 | 公共事業<br>応札価格資料 |



#### 課題B メタン発酵処理施設規模の検討

- □ FITを活用する場合での事業性について試算
  - ②試算結果

|              | ガス発生効率※     | 売電収入        | 投資回収期間 |
|--------------|-------------|-------------|--------|
| <b>建建筑</b> 版 | $(N-m^3/t)$ | (千円/t-日処理量) |        |
| 食品系廃液        | 150.7       | 6.56        | 4年2ヶ月  |
| 関西地区廃液       | 81.0        | 2.49        | 11年0ヶ月 |
| 受槽廃液         | 62.8        | 1.42        | 19年2ヶ月 |

<sup>※</sup>課題Aの研究結果を基に算出した廃液1t当たりの消化ガス発生量

・産業廃棄物処理業を取り巻く社会情勢を考慮すると、投資回収期間 としては、5年以内を求められる。



食品系廃液を対象とした事業を考える必要がある。



#### 課題B メタン発酵処理施設規模の検討

- □処理施設規模の検討
  - -現在の受入量:330t/日
  - 水処理を対象にしているため、比較的低濃度の廃液を取り扱っている。
    - ⇒メタン発酵に適している高濃度の食品系廃液の 取扱量はおよそ1割程度である。
  - •今後、高濃度の食品系廃液は2倍量まで増やせる可能性 は見込める。



処理設備規模は、日量30t~60t規模が妥当である。



### まとめ

- □ マニフェスト分析結果から受入は業種、量ともにランダム であり、メタン発酵阻害物質排出業種が含まれることが わかった。
- □ 阻害性廃液の全体廃液量における比率は2.3%程度であり、メタン発酵への影響は限定的である。
- □ 産業廃棄物由来の廃液でもメタン発酵技術が適用できる 可能性が大いにあることがわかった。
- □ 食品系廃液を対象にすることで、メタン発酵処理の事業 化は期待できることが確認できた。



### 6. 今後の予定

- □ 実機を想定した連続処理実験を行ない、消化ガス発生量の安定性を確認する。
- □ さらに、連続処理実験から汚泥の消化率と溶解 性有機物の除去率を把握し、後段での廃水処理 軽減効果を確認する。



メタン発酵の事業実現性は大いにあるといえるため、事業化に向けた実証研究に取り組んでいく。



□ご清聴ありがとうございました。