令和元年度 福岡県リサイクル総合研究事業化センター 研究成果発表会

廃プラスチックの高度利用による、 製鋼反応研究会

研究成果報告

2019年6月25日

幹事会社:株式会社アステック入江

【研究期間】

2017年8月 ~ 2019年3月

【研究メンバー】

- •北九州市立大学 大矢研究室
- •西日本工業大学 瀬々研究室
- ・九州メタル産業株式会社
- •東京製鐵株式会社
- ・株式会社アステック入江

0.背景

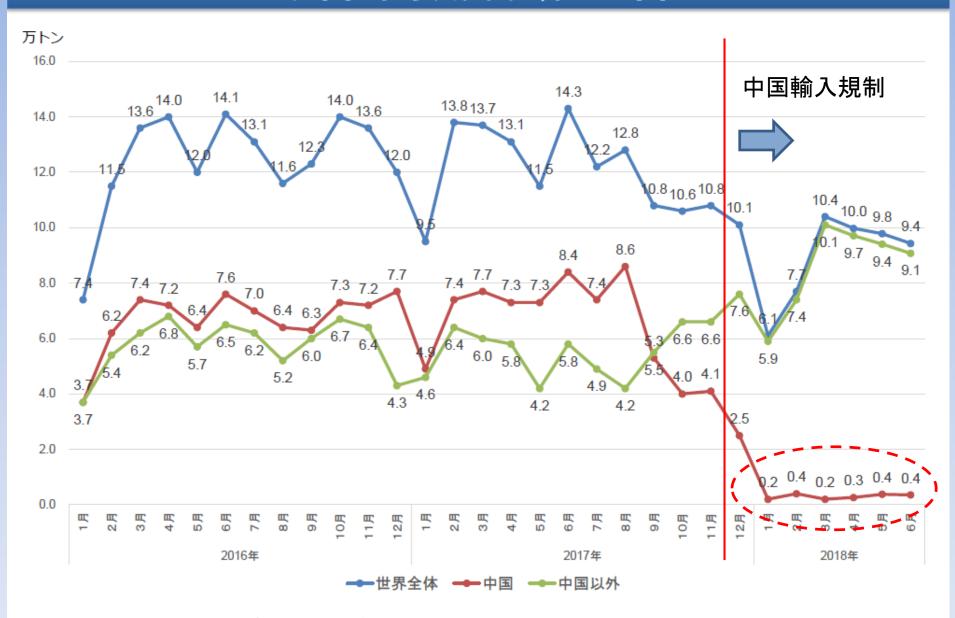
1) 行き場を失いつつある廃プラスチック

廃プラスチック 中国輸入規制 処理問題

2)「地産地消」リサイクルプロセスの確立

スクラップ

ブリケット


リサイクル

電気炉

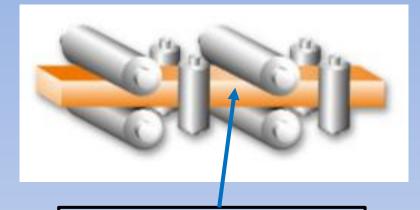
廃プラ

スケール

我が国のプラスチックくずの輸出量

出典:財務省貿易統計(HSコード:プラスチックのくず 3915)

■廃プラスチックの総排出量・有効利用量・有効利用率の推移


(単位=万t)

(丰位一)														_ ,,,,,
年		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
廃プラ総排出量		1,013	1,006	1,005	994	998	912	945	952	929	940	926	915	899
有効利用量	マテリアル リサイクル量	181	185	204	213	214	200	217	212	204	203	199	205	206
	ケミカル リサイクル量	30	29	28	29	25	32	42	36	38	30	34	36	36
	サーマル リサイクル量	364	368	457	449	494	456	465	496	502	535	534	521	517
	合 計	575	582	688	692	733	689	723	744	744	767	768	763	759
有効利用率(%)		57	58	69	69	73	75	77	78	80	82	83	83	84

出典:(一社)プラスチック循環利用協会

ミルスケールとは…

冷却後

熱間圧延中に 表面の酸化鉄が剥離 ↓ ミルスケール

<スケールの構造>

今回の研究で目指すもの…

<廃プラスチックによる還元反応>

酸化鉄 + 廃プラスチック

→ 鉄 + ガス

ヘマタイト(Fe2O3)

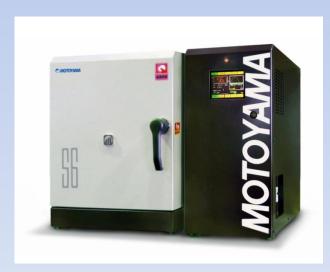
マグネタイト(Fe3O4)

ウスタイト(FeO)

ポーラス層

Fe

1.目的


・電気炉鉄鋼業から発生するミルスケールを、 自社内で還元利用する事は、我が国の鉄資 源有効利用に直結する。

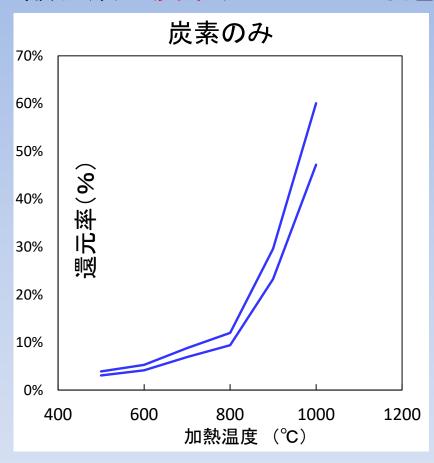
 還元剤として廃プラスチックを用いることは、 行き場を失いつつある廃プラスチックの高度 利用に繋がり、更に水素による還元を一部担 わせ、低炭素社会構築へ寄与する事を目的と する。

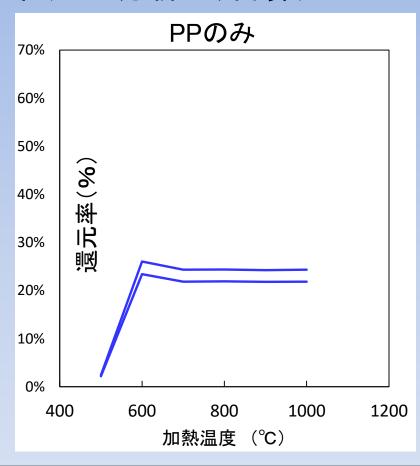
2.これまでの成果

①プラスチックによる還元機構解析

西日本工業大学の試験用電気炉にて、酸化鉄を炭材とポリプロピレン(以下PPと略記)を用い、還元基礎試験を実施した。

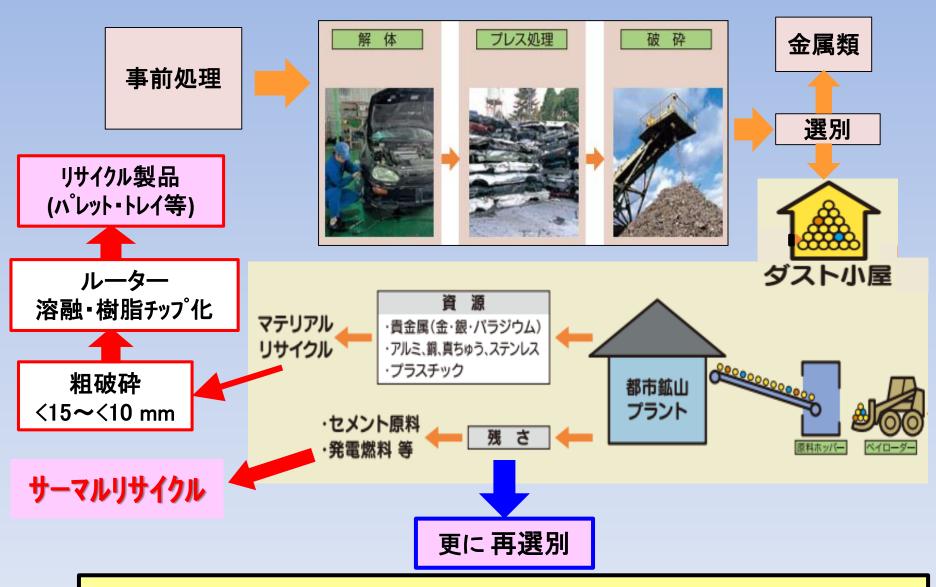
- ·常用最高温度 1600℃
- ·温度制御 PID制御
- •雰囲気 大気
- •炉内寸法 W200×H200×D250mm


<アルミナるつぼ>



- ·容量 15mL
- ·大きさ 340×37 mm
- ·常用温度 1200℃
- •主成分 Al₂O₃(95.0%)

<還元率測定結果>


酸化鉄の炭素及びPPによる還元率(SEM分析より計算)

- ① 炭素のみでは高温ほど還元率は高くなる。
- ② PPのみでは還元率21%~26%程で、700℃からほぼ一定となる。

九州メタル(株)殿 既にマテリアルリサイクル出来る選別技術を確立

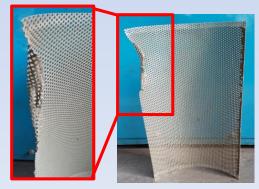
還元剤は異種の廃プラが混合しても利用可能 ⇒ 還元剤の利点

- 多種類廃プラスチック適用のため粉砕試験

<3mmアンダーの原料>

特に問題は見られなかった。

<6mmアンダーの原料>



破砕前に手選別した金属類

選別できなかった 金属類によって スクリーンが破損

金属類の徹底除去が必要!

②ミルスケールブリケットの成型

九州メタル産業㈱供給の廃PPを微粉砕、東京製鐵㈱から発生するミルスケールとのブリケット成型試験を実施。

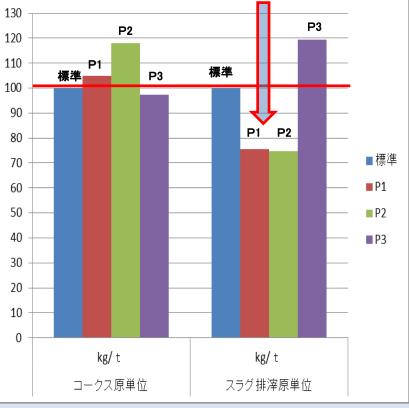
<粒度> 🔥

成型性良コストアップ

試験用ブリケットを製造

③東京製鐵(株)での実炉試験

電気炉操業においてミルスケールブリケットを投入し 有効性の確認を行った。



<試験結果まとめ>

・ 各指標は標準を100として、標準からの差異率を 加算したもの。

排滓原単位減少

<試験結果>

廃PP配合

- ・電力原単位は変化なし
- ・排滓原単位が減少

昇温時に分解されたPP由来の CO・H2ガスが、ミルスケールを 還元したと推測

ミルスケールの還元に効果あり!

炭材のみ配合

- 電力原単位が増加
- ・排滓原単位が増加

一部の炭材が還元反応に寄与せず、溶鋼及びスラグ中に溶け込み、脱炭反応が必要となった為、通電時間が伸びたと推測

還元効果はあるが生産コストが増加

3.まとめ(今後の予定)

実炉試験で操業に大きく影響する電力原単位の 上昇もなく、ミルスケール還元による出鋼歩留り 向上を確認できた。

- 製鉄業において、発生する鉄源を再利用することは、スクラップ価格高騰に併せて大きなコストメリットがあり、試験水準P1を主体に拡大試験を行う。
- ブリケットの成形性や廃プラスチックの回収・分別・粉砕の更なる効率化を目指す。

廃プラスチックの高度利用による、 製鋼反応研究会

ご清聴ありがとうございました!

北九州市立大学 大矢研究室 西日本工業大学 瀬々研究室 東京製鐵株式会社 九州メタル産業株式会社 株式会社アステック入江